基于布拉格光纤光栅的腐蚀监测传感技术研究

岑远遥, 廖光萌, 何建新, 赵方超, 朱玉琴

装备环境工程 ›› 2025, Vol. 22 ›› Issue (10) : 143-148.

PDF(2718 KB)
PDF(2718 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (10) : 143-148. DOI: 10.7643/ issn.1672-9242.2025.10.017
环境试验与观测

基于布拉格光纤光栅的腐蚀监测传感技术研究

  • 岑远遥1, 2, 廖光萌1, 2, 何建新1, 2, 赵方超1, 2, *, 朱玉琴1, 2
作者信息 +

Research on Corrosion Monitoring Sensing Technology Based on Bragg Fiber Grating

  • CEN Yuanyao1, 2, LIAO Guangmeng1, 2, HE Jianxin1, 2, ZHAO Fangchao1, 2, *, ZHU Yuqin1, 2
Author information +
文章历史 +

摘要

目的 针对装备铝合金结构服役过程中腐蚀监测需求,设计铝合金应变片式的光纤光栅腐蚀传感器,用于弹药包装箱/包装桶及狭小空间中金属的腐蚀监测。方法 通过搭建盐雾试验环境,得到光纤光栅反射光谱变化特征,在传感器内部设计不受力且只对温度敏感的光纤光栅传感器,解决被测装备的温度与应力交叉敏感问题。结果 在实验室开展盐雾250 h试验,FBG波长总变化量为2.463 nm,在腐蚀环境恒定的情况下,腐蚀时间与FBG波长变化量呈线性关系。开展2 000 h海洋大气环境试验,FBG波长总变化量约为2.7 nm,铝合金在腐蚀初期和腐蚀后期,FBG波长基本稳定。结论 基于光纤光栅的腐蚀监测结构能够真实地反映金属的腐蚀情况。

Abstract

The work aims to design a fiber optic grating corrosion sensor with aluminum alloy strain gauges to meet the corrosion monitoring requirements during the service of aluminum alloy structures and use it in metal corrosion monitoring in ammunition packaging boxes/barrels and narrow spaces. By setting up a salt spray test environment, the characteristics of fiber grating reflection spectrum changes were obtained. A fiber grating sensor that was not subject to force and only sensitive to temperature was designed inside the sensor, solving the problem of cross sensitivity between temperature and stress of the tested equipment. A 250 hour salt spray test was conducted in the laboratory, and the total wavelength change of FBG was 2.463 nm. Under a constant corrosive environment, the corrosion time was linearly related to the wavelength change of FBG. In a 2 000 hour marine atmospheric environment test, the total wavelength change of FBG was approximately 2.7 nm, and the FBG wavelength of aluminum alloy remained basically stable during the early and late stages of corrosion. The experimental results show that the corrosion monitoring structure based on fiber grating can truly reflect the corrosion situation of metals.

关键词

铝合金腐蚀 / 光纤光栅 / 光谱分析 / 腐蚀监测 / 交叉敏感 / 温度补偿

Key words

aluminum alloy corrosion / fiber grating / spectral analysis / corrosion monitoring / cross sensitivity / temperature compensation

引用本文

导出引用
岑远遥, 廖光萌, 何建新, 赵方超, 朱玉琴. 基于布拉格光纤光栅的腐蚀监测传感技术研究[J]. 装备环境工程. 2025, 22(10): 143-148 https://doi.org/10.7643/ issn.1672-9242.2025.10.017
CEN Yuanyao, LIAO Guangmeng, HE Jianxin, ZHAO Fangchao, ZHU Yuqin. Research on Corrosion Monitoring Sensing Technology Based on Bragg Fiber Grating[J]. Equipment Environmental Engineering. 2025, 22(10): 143-148 https://doi.org/10.7643/ issn.1672-9242.2025.10.017
中图分类号: TG172   

参考文献

[1] 刘冬, 刘静, 黄峰, 等. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
LIU D, LIU J, HUANG F, et al.Corrosion Fatigue Crack Propagation Performance of DH36 Steel in Simulated Service Conditions for Offshore Engineering Structures[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(6): 959-965.
[2] 朱若林, 张利涛, 王俭秋, 等. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
ZHU R L, ZHANG L T, WANG J Q, et al.Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. Journal of Chinese Society for Corrosion and Protection, 2018, 38(1): 54-61.
[3] 张辰玉, 袁猛, 刘元海. 海洋环境下飞机典型接地柱防腐蚀设计研究[J]. 装备环境工程, 2020, 17(12): 54-59.
ZHANG C Y, YUAN M, LIU Y H.Corrosion Protection Design of Aircraft Ground Column in Marine Environment[J]. Equipment Environmental Engineering, 2020, 17(12): 54-59.
[4] 胡鹏飞, 张慧霞, 李相波, 等. 电偶腐蚀研究方法综述[J]. 装备环境工程, 2020, 17(10): 110-117.
HU P F, ZHANG H X, LI X B, et al.Summary of Research Methods for Galvanic Corrosion[J]. Equipment Environmental Engineering, 2020, 17(10): 110-117.
[5] 王争荣, 向永华, 杨潇, 等. 岛礁油料装备的腐蚀特性及全寿命腐蚀控制策略[J]. 装备环境工程, 2020, 17(10): 14-19.
WANG Z R, XIANG Y H, YANG X, et al.Corrosion Characteristics and Life Cycle Corrosion Control Strategy for Oil Equipment on Islands and Reefs[J]. Equipment Environmental Engineering, 2020, 17(10): 14-19.
[6] 沈剑, 丁星星, 宋凯强, 等. 海洋大气环境下装备材料的腐蚀与防护研究进展[J]. 装备环境工程, 2020, 17(10): 103-109.
SHEN J, DING X X, SONG K Q, et al.Research Progress on Corrosion and Protection of Equipment Materials in Marine Atmosphere[J]. Equipment Environmental Engineering, 2020, 17(10): 103-109.
[7] 任勇, 成光. 海洋环境金属材料腐蚀与防护仿真研究进展[J]. 装备环境工程, 2019, 16(12): 93-98.
REN Y, CHENG G.Research Progress on Corrosion and Protection Simulation of Metal Materials in Marine Environment[J]. Equipment Environmental Engineering, 2019, 16(12): 93-98.
[8] 宋丰轩, 赵启忠, 李飞龙, 等. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
SONG F X, ZHAO Q Z, LI F L, et al.Effect of Aging Treatment on Corrosion Rate of 7050 Al-Alloy Plate[J]. Journal of Chinese Society for Corrosion and Protection, 2017, 37(3): 287-292.
[9] 渠蒲, 于慧文, 陈永浩, 等. 电阻探针在油田站场生产设施腐蚀平台中的应用研究[J]. 石油化工腐蚀与防护, 2023, 40(4): 39-42.
QU P, YU H W, CHEN Y H, et al.Application Research on Resistance Probe in Corrosion Platform of Oilfield Station Production Facilities[J]. Corrosion & Protection in Petrochemical Industry, 2023, 40(4): 39-42.
[10] 贾彦兵, 高宏飚, 钱正宏, 等. 海上风电设备腐蚀在线监测技术研究与应用[J]. 材料开发与应用, 2021, 36(3): 95-100.
JIA Y B, GAO H B, QIAN Z H, et al.Research and Application of On-Line Monitoring Technology of Offshore Wind Power Equipment Corrosion[J]. Development and Application of Materials, 2021, 36(3): 95-100.
[11] 岑远遥, 刘聪, 万军, 等. 基于双电极传感器的腐蚀电流检测系统抗扰技术[J]. 装备环境工程, 2023, 20(8): 142-151.
CEN Y Y, LIU C, WAN J, et al.Anti-Disturbance Technology of Corrosion Current Detection System Based on Double Electrode Sensor[J]. Equipment Environmental Engineering, 2023, 20(8): 142-151.
[12] 蒋磊, 张学智, 王进, 等. 基于光纤布拉格光栅阵列的刀头磨损实时在线检测[J]. 光学学报, 2019, 39(12): 46-52.
JIANG L, ZHANG X Z, WANG J, et al.Real-Time Online Detection of Cutter Wear Based on Fiber Bragg Grating Array[J]. Acta Optica Sinica, 2019, 39(12): 46-52.
[13] KINET D, MÉGRET P, GOOSSEN K W, et al. Fiber Bragg Grating Sensors Toward Structural Health Monitoring in Composite Materials: Challenges and Solutions[J]. Sensors, 2014, 14(4): 7394-7419.
[14] SAHOTA J K, GUPTA N, DHAWAN D.Fiber Bragg Grating Sensors for Monitoring of Physical Parameters: A Comprehensive Review[J]. Optical Engineering, 2020, 59(6): 1.
[15] 权志桥, 方新秋, 薛广哲, 等. 表面粘贴布拉格光纤光栅传感器的应变传递耦合机理研究[J]. 中国激光, 2020, 47(1): 163-172.
QUAN Z Q, FANG X Q, XUE G Z, et al.Strain Transfer Coupling Mechanism of Surface-Bonded Fiber Bragg Grating Sensor[J]. Chinese Journal of Lasers, 2020, 47(1): 163-172.
[16] GÜEMES A, FERNÁNDEZ-LÓPEZ A, DÍAZ-MAROTO P F, et al. Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors[J]. Sensors, 2018, 18(4): 1094.
[17] 齐跃峰, 刘辉, 毕卫红. 基于光纤光栅的铝合金腐蚀监测研究[J]. 光电工程, 2012, 39(5): 25-29.
QI Y F, LIU H, BI W H.Corrosion Monitoring of the Aluminum Alloy Based on Optical Fiber Grating[J]. Opto-Electronic Engineering, 2012, 39(5): 25-29.
[18] 岑远遥, 廖光萌, 朱玉琴, 等. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
CEN Y Y, LIAO G M, ZHU Y Q, et al.Monitoring Technology for Stress Corrosion Crack Propagation of Al-Alloy Based on Optical Fiber Bragg Grating[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(3): 815-822.
[19] 朱路佳. 埋入式光纤智能复合材料传感与力学性能研究[D]. 南京: 南京航空航天大学, 2018: 32-33.
ZHU L J.Study on Sensing and Mechanical Properties of Embedded Optical Fiber Intelligent Composite Materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 32-33.
[20] 李红, 祝连庆, 刘锋, 等. 裸光纤光栅表贴结构应变传递分析与实验研究[J]. 仪器仪表学报, 2014, 35(8): 1744-1750.
LI H, ZHU L Q, LIU F, et al.Strain Transfer Analysis and Experimental Research of Surface-Bonded Bare FBG[J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1744-1750.
[21] 中国人民解放军总装备部. 军用装备实验室环境试验方法第11部分:盐雾试验: GJB 150.11A—2009[S]. 北京: 中国标准出版社, 2009.
General Armaments Department of the People's Liberation Army. Military Equipment Laboratory Environmental Test Methods Part 11: Salt Spray Test: GJB 150.11A— 2009[S]. Beijing: China Standard Press, 2009.
[22] 张俊, 曾捷, 王博, 等. 基于光谱特征分析的光纤光栅腐蚀传感器研究[J]. 光谱学与光谱分析, 2016, 36(3): 853-856.
ZHANG J, ZENG J, WANG B, et al.The Research on Optic Fiber FBG Corrosion Sensor Based on the Analysis of the Spectral Characteristics[J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 853-856.

PDF(2718 KB)

Accesses

Citation

Detail

段落导航
相关文章

/